Dynamics of maize endosperm development and DNA endoreduplication.
نویسندگان
چکیده
Endosperm development in Zea mays is characterized by a period of intense mitotic activity followed by a period in which mitosis is essentially eliminated and the cell cycle becomes one of alternating S and G phases, leading to endoreduplication of the nuclear DNA. The endosperm represents a significant contribution to the grain yield of maize; thus, methods that facilitate the study of cellular kinetics may be useful in discerning cellular and molecular components of grain yield. Two mathematical models have been developed to describe the kinetics of endosperm growth. The first describes the kinetics of mitosis during endosperm development; the second describes the kinetics of DNA endoreduplication during endosperm development. The mitotic model is a modification of standard growth curves. The endoreduplication model is composed of six differential equations that represent the progression of nuclei from one DNA content to another during the endoreduplication process. Total nuclei number per endosperm and the number of 3C, 6C, 12C, 24C, 48C, and 96C nuclei per endosperm (C is the haploid DNA content per nucleus) for inbred W64A from 8 to 18 days after pollination were determined by flow cytometry. The results indicate that the change in number of nuclei expressed as a function of the number of days after pollination is the same from one yearly crop to another. These data were used in the model to determine the endosperm growth rate, the maximum nuclei number per endosperm, and transition rates from one C value to the next higher C value. The kinetics of endosperm development are reasonably well represented by the models. Thus, the models provide a means to quantify the complex pattern of endosperm development.
منابع مشابه
A dominant negative mutant of cyclin-dependent kinase A reduces endoreduplication but not cell size or gene expression in maize endosperm.
Cells in maize (Zea mays) endosperm undergo multiple cycles of endoreduplication, with some attaining DNA contents as high as 96C and 192C. Genome amplification begins around 10 d after pollination, coincident with cell enlargement and the onset of starch and storage protein accumulation. Although the role of endoreduplication is unclear, it is thought to provide a mechanism that increases cell...
متن کاملCyclin-dependent kinase inhibitors in maize endosperm and their potential role in endoreduplication.
Two maize (Zea mays) cyclin-dependent kinase (CDK) inhibitors, Zeama;KRP;1 and Zeama;KRP;2, were characterized and shown to be expressed in developing endosperm. Similar to the CDK inhibitors in Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum), the maize proteins contain a carboxy-terminal region related to the inhibitory domain of the mammalian Cip/Kip inhibitors. Zeama;KRP;1...
متن کاملControl of cell proliferation, endoreduplication, cell size, and cell death by the retinoblastoma-related pathway in maize endosperm.
The endosperm of cereal grains is one of the most valuable products of modern agriculture. Cereal endosperm development comprises different phases characterized by mitotic cell proliferation, endoreduplication, the accumulation of storage compounds, and programmed cell death. Although manipulation of these processes could maximize grain yield, how they are regulated and integrated is poorly und...
متن کاملExpression, regulation and activity of a B2-type cyclin in mitotic and endoreduplicating maize endosperm
Cyclin-dependent kinases, the master regulators of the eukaryotic cell cycle, are complexes comprised of a catalytic serine/threonine protein kinase and an essential regulatory cyclin. The maize genome encodes over 50 cyclins grouped in different types, but they have been little investigated. We characterized a type B2 cyclin (CYCB2;2) during maize endosperm development, which comprises a cell ...
متن کاملImpaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize.
The phytohormone auxin (indole-3-acetic acid [IAA]) plays a fundamental role in vegetative and reproductive plant development. Here, we characterized a seed-specific viable maize (Zea mays) mutant, defective endosperm18 (de18) that is impaired in IAA biosynthesis. de18 endosperm showed large reductions of free IAA levels and is known to have approximately 40% less dry mass, compared with De18. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 92 15 شماره
صفحات -
تاریخ انتشار 1995